
Online Monitoring

• Purpose of this talk:
– general overview of monitoring goals
– description of the monitoring framework
– list of monitored quantities - variables

displayed on-screen
– errors/actions, logging of output
– reconstruction needs

• Tuesday/Wednesday session:
– technical issues, unresolved issues, discussion

D.A. Petyt Online Workshop - Jan ‘01

Goals of Monitoring
• Online monitoring should:

– check the performance of the detector elements and track changes
on both short and long timescales

– check the quality of the data

• This is achieved by:
– constructing channel maps from singles/cosmics to detect hot/dead

channels
– performing simple reconstruction of beam events and cosmics to

obtain diagnostic checks of the data (and beam)

• The monitoring system should be able to detect
and log failures/anomalies on a timescale of << 1
hour.
– A summary containing all relevant data should be produced at the

end of each run

Monitoring - Near-Online
• The raw data is written by the DAQ in

the form of root files. These contain:
– beam events, cosmics, singles

summaries, flasher summaries

• The online monitoring PC receives this
data from the dispatcher on a
client/server basis

• The various data types are processed by
modules within the monitoring system
to produce the monitored quantities
– this uses reconstruction code developed

for the offline system
– may require constants from the database

• The system runs on its own PC at the
detector sites, from which quantities are
displayed and logged

DAQ

Data Dispatcher

Online
Monitoring

Root files

Serves root files to near-
online clients

To database

Offline
reconstruction
code

Framework - CDF RunII
• The online monitoring framework is based on the CDF

Run II model
• CDF have agreed to supply us with their monitoring code

(contact: Kaori Maeshima at FNAL)
• The system is ROOT-based and possesses the features that

we require:
– modular, extensible framework
– histogram output - display program
– local/remote access methods
+ error logging

• We currently have 18 month old test code. New code
(developed during 2000 CDF commissioning run is being
made available
– need this a.s.a.p. to begin prototyping

Overview of the framework
• Splitting of Producer,

Presenter, Display
Server:

• Producer:
– modules that analyse raw

data, create histograms,
perform statistical analyses

• Presenter
– the display program - real-

time updates of monitored
quantities

• Display Server
– monitor results transmitted

to networked
(local/remote) machines

Example of monitoring GUI

Select input stream

Click on “Start”
displays List Tree of
Modules, sub-processes and
variables

Drawing items:

RIGHT CLICK on object
in List Tree.

Canvas automatically sub-
divides if object contains
more than one histogram

Deleting items:

LEFT CLICK on object in
List Tree and select Delete
from List Tree menu

Controls/suspends
automatic update of
histograms

Open new GUI/canvases

“ZERO”: resets selected
histogram

“RESTORE”: undo of
zero command

“CONTENT”: examine
bin contents

Example of sample output

Local/Remote Access

• Locally - via root sockets
– replaces use of memory map file in old framework
– can allow display program to run off a separate

machine from Producer - removes histogram plotting
CPU load from monitoring PC (can be a big overhead)

• Remotely -
– via web access - ROOT-aware Apache server

• need to write out ROOT file periodically during run

– via sockets
– rootd?

Monitored Quantities
• Several sources:

• Usefulness of each source depends on rate and number of
channels in each detector:
– 22 K channels(far), 11K channels(near), 1440 channels(caldet)
– cannot monitor beam events in far detector
– cosmics cannot be used to construct real-time hit-maps in far

detector

Data
source NEAR FAR CALDET

Beam <50 Hz 0.1 mHz 80 Hz

Singles 0.6 MHz 1.4 MHz 90 kHz

Cosmics 11 Hz 1 Hz 11 Hz

1) Singles rates/hit maps
• The performance of detector elements in each of the three

detectors will be principally monitored using singles data
– rates of cosmic muons are too low, especially in far detector
– possible longer-term cosmic detector monitoring in near/CalDet

• Trigger farm writes out singles data summaries
– singles “hits” do not go beyond farm processors

• From these summaries we want to monitor:
– Rates:

• overall detector rate
• per crate rate

– Maps:
• per channel maps or per pmt maps

– depends on #channels
– is per pmt sufficient?

– Anomalies
• list of dead/hot channels

Means, rms

Farm rate issue

Threshold set in Farm

Toy singles rate display

Simple mock up
– real-time updates of hit map and

projections
– real-time rate monitor with

running mean
– statistics summary canvas

Issues identified:
– how often to update (overhead)
– what is the best way of displaying

information from large numbers
of channels

Histogram canvas Statistics canvas

2) Cosmics/Beam data
• A fraction of the beam data and/or cosmic events will be

reconstructed and analysed to monitor the data quality
– precise fraction to be determined (depends on performance of

reconstruction algorithms)
– current goal is to reconstruct 1000 events/run to obtain sensible

statistics on distributions

• Far detector
– use Paul’s cosmics finder or equivalent
– too few beam events to do anything other than monitor rate

• Calibration detector:
– reconstruct beam events and cosmics

• Near detector:
– analyse time frames - most testing reconstruction challenge

Far detector events

• Number of identified cosmics
(efficiency)

• Number of hits
• Mean corrected pulse height
• Track length
• Number of planes crossed
• Track direction cosines
• Track residuals
• Track quality - χ2?
• Plane hit map

Reconstruction of ~1000 cosmic muons

Track

Cluster

b

c

a

d

a: event length; b: principal track length,
c: event width; d: cluster z position

• Total number of hits
• Summed (corrected) pulse height
• Event flavour: e,µ,h
• Event length
• Event width
• # of track segments
• Principal track: track length, track

angle

• # of clusters
• Principal cluster

– summed pulse height
– cluster z position
– cluster angle

• spatial distribution of clusters
• contained/uncontained:

– 0: contained, 1: exit back,
– 2: exit side, 3: exit side and back

• Hits per plane

Calibration detector events

Near detector events time frames

 VETO TARGET HADRON SPECTROMETER

time

Track 1

Track 2

Track 3
Shower 1

Shower 2

Shower 3

Track 1
Track 2

Track 3
Shower 1

Shower 2 Shower 3

• Total number of hits
– full detector, region by region,

cumulative plane map

• Number of clusters (event
candidates)

• Vertex distribution of clusters
• Time distribution of clusters
• # of overlapped clusters
• # of tracks per cluster
• cluster lengths
• cluster RMS widths
• cluster flavour tags
• # of track segments/time frame
• # of hits (+p.h.) in primary cluster
• # of hits (+p.h.) in all other

clusters
• contained/uncontained flag

Offline reconstruction code required
• Far detector:

– cosmic muon finder (Paul Miyagawa code)
– de-muliplexing code (Brian Rebel code)

• Calibration detector:
– Track finding Hough, Kalman filter
– Track fitting Kalman, ...
– Clustering fast clustering algorithm
– cosmic muon code Paul’s code

• Near detector (as calibration detector) +
– event splitting Fast splitter (TDC cuts+...)
– vertex finding

• General offline code:
– raw data format Robert’s classes/code
– database access Nick’s code

Display/Logging/Interfaces

• Operator display - most pertinent information (flexible):
– Singles window:

• total singles rates/ per crate rates
• total rate as a function of time
• PMT/channel maps, projections

– Cosmics/Beam data windows:
• user-defined views from module List Tree

– Status window
• Run number, time, overall rates

– Message window
• general messages, error reports

– GUI window
– Windows from external sources

• flasher data

Logging contd.
• Root file (with all histograms) should be saved at end of

run. A digest of this information will be generated and
saved in a summary file, including:
– means/rms of important distributions - refer to variable list
– overall rates
– append error log (see below)

• Error logging - what can go wrong?
– dead/hot channels - auto-generated list, should go in database
– Dead regions of detector - log and raise a flag !!!!
– Anomalously high background rates - raise a flag - should be

spotted in DAQ? !!
– No reconstructed beam events !!!!
– Anomalous data distributions

• Error logging model:
– record (on screen and in error log→database) - no further action?
– is this enough? - need to ensure all bases are covered

Sequence of events

Accept socket connections
Connect to dispatcher

Start of run

Get run number

Create root file
Initialise histograms

Request data from dispatcher

Disconnect from dispatcher

End of run

Calculate final run statistics

Close root file
Create run summary and write to file

Check dead channels: write to database if necessary

Process data, fill histograms,
update statistics
Check for errors: display
and write to error log

Periodically write root file

Mid-run

Next steps

• Obtain new framework and begin tests
• Move over to new Raw Data format
• Integration tests:

– root file->Dispatcher>Monitoring

• Finalise list of monitored quantites and preferred
displays

• Work with reconstruction group to develop/adapt
algorithms for monitoring use

Discussion Issues: Tue/Wed

• Monitored quantities is current list complete?
• Rate issues processing power/DAQ rates
• Reconstruction code who/what/when(/how)?

– requirements
– interfaces
– issues

• Logging what, stored where?
• Fault handling who should know/when?
• Local/Remote access methods/security
• Database access what is needed/when?
• Correlation with beam data?

